彩票平台稳赚计划

  • <tr id='EMbaSb'><strong id='EMbaSb'></strong><small id='EMbaSb'></small><button id='EMbaSb'></button><li id='EMbaSb'><noscript id='EMbaSb'><big id='EMbaSb'></big><dt id='EMbaSb'></dt></noscript></li></tr><ol id='EMbaSb'><option id='EMbaSb'><table id='EMbaSb'><blockquote id='EMbaSb'><tbody id='EMbaSb'></tbody></blockquote></table></option></ol><u id='EMbaSb'></u><kbd id='EMbaSb'><kbd id='EMbaSb'></kbd></kbd>

    <code id='EMbaSb'><strong id='EMbaSb'></strong></code>

    <fieldset id='EMbaSb'></fieldset>
          <span id='EMbaSb'></span>

              <ins id='EMbaSb'></ins>
              <acronym id='EMbaSb'><em id='EMbaSb'></em><td id='EMbaSb'><div id='EMbaSb'></div></td></acronym><address id='EMbaSb'><big id='EMbaSb'><big id='EMbaSb'></big><legend id='EMbaSb'></legend></big></address>

              <i id='EMbaSb'><div id='EMbaSb'><ins id='EMbaSb'></ins></div></i>
              <i id='EMbaSb'></i>
            1. <dl id='EMbaSb'></dl>
              1. <blockquote id='EMbaSb'><q id='EMbaSb'><noscript id='EMbaSb'></noscript><dt id='EMbaSb'></dt></q></blockquote><noframes id='EMbaSb'><i id='EMbaSb'></i>

                数学系“60周年”系庆系列报告 基于非光滑优化的半监督聚●类算法



                活动地点:Zoom 会议

                活动时间:2020-07-29 09:00:00

                报告主题:基于非光滑优化的半监督聚类重量雖然沒有弒仙劍要重算法

                报告人:白富生 教授 (重庆师范大学)

                报告时间:2020年7月29日(周三) 9:00-11:00

                参会方式:Zoom 会议

                会议ID:864 975 5986

                主办部门:理学院数学系

                报告摘要:A novel model for semi-supervised clustering (SSC) problems with pairwise constraints is proposed. The model is formulated as a nonconvex nonsmooth optimization problem. To solve the problem, an auxiliary SSC problem is formulated to generate starting points. An incremental SSC algorithm is then developed. The adoption of the incremental approach allows us to deal with the nonconvexity of the SSC problem by generating good initial points to approximate the solution. The discrete gradient method is applied to solve both the auxiliary SSC and the underlying problems. The performance of the incremental SSC algorithm is evaluated and compared with four benchmarking SSC algorithms on twelve real-world data sets from the UCI Machine Learning Repository. Numerical results show that the presented algorithm outperforms the other four algorithms in identifying compact and well-separated clusters with high constraints satisfaction rate.

                欢迎教师、学生参加!

                • 快速导航
                • 国际交流

                版权所有 ? 上海大学   沪ICP备09014157   地址:上海市宝山区上大『路99号   邮编:200444   电话总机:021-96928188   校内电话查询
                互联网违法爆退數十步和不良信息举报   举报电话   举报邮箱   沪公网︽安备@31009102000049号
                技术支持:上海大学信息化♀工作办公室   联系我们